

Weldon Thomson represents 6,000 brood cows, while Ken Remington's herd numbers fewer than 100, but innovative management can enhance operations of any size. During the 1999 Range Beef Cow Symposium in Greeley, Colo., both commercial cowmen told how management of annual forage crops can help reduce cow maintenance costs.

W
hilemany pundits proffer theopinion that cow-calf producershavelittle, if any, influence over the price they receive for their cattle, Weldon Thomson contendstheir influence is considerable. The type of cattle that ranchers choose to raise, as well as the management and marketing practices applied, can and do influenceprice.
However, the manager of Canada's Deseret Ranches believes ranchers exert the greatest influence on profitability by scrutinizing how those samefactors affect costs. Thomson says that for most operations the biggest bill on the books represents the cost of cow maintenance. So that's the place
to start looking for cost-cutting opportunities.
Colorado cattleman Ken Remington agrees. He says sophisticated production of pork and poultry, with the benefit of cheap grain, puts pressure on beef producers, so cattlemen have to makethe most of the bovine beast's ability to utilize forages. According to Remington, forage based beef producers must increasetheir sophistication and efficiency in feeding the brood cow.
"Just because you can put up and feed back hundreds of tons of forage, and seldom leave an air-conditioned tractor cab, doesn't mean you can afford to do it," reckons Remington. "You may need to sell most of your high-quality hay to the dairy or
horseoperation down the road and look for cornstalks or other cheaper ways of feeding your cows."

Both Thomson and Remington use annual forages to supplement brood-cow nutrition, albeit in different ways. While one has slashed winter feed costs by grazing windrowed forage, the other uses green, growing cereal pastures to extend the grazing season and to boost nutrition. Both strategies address the fact that forages are only cheap, in relationship to grain, when the cow assumesmore responsibility for the harvest.

Windrow grazing

With its southernmost fencelinelocated just 6 miles
north of the M ontana border, Deseret Rancheshas its headquarters near Raymond, Alberta. This is foothills country on the Milk River Ridge, with elevations ranging from 3,500 to 4,300 feet, and a region experiencing extreme weather conditions. Temperatures climb to $100^{\circ} \mathrm{F}$ in the summer and plummet to minus 40° during winters frequently accompanied by generous amounts of snow.
Periodically, Chinook winds temper winter's severity, boosting the mercury by $60^{\circ}-70^{\circ}$ and melting snow cover. Deseret Ranches takes advantage of the Chinook effect to extend grazing by the operation's 6,000 cows into latefall and winter.

Aswith most Northern
CONTINUED ON PAGE 120

MAKE 'EM FORAGE CONTINUED
outfits, however, supplemental feeding of harvested forages had been a normal practice - and an expensiveone.
Thomson says feed costs on Northwestern ranches account for $55 \%-80 \%$ of total operating expenses because ranchers often spend too much for supplemental cow feed. He admits that Deseret was guilty, too, until windrow grazing was adopted. He also admits that it began almost by accident.
"We got started one fall when a windrowed field of oats received numerous rains. We felt it wasn't worth baling and hauling in," relates Thomson. "During the winter, we sorted off some thinner cows and turned them into the windrowed field. They picked up in condition, so we pulled them out and turned in some others.
"Thenext year, an early winter caught us with our harvest incomplete, including a field of windrowed barley. It was a tough winter with snow up to 18 inches deep, but when weturned cows into thefield,
they had no trouble finding it. They cleaned it up and left the windrows looking likelong lines of troughs in thesnow," Thomson adds.
From these unplanned experiences, Thomson says, he learned that the cows could do well on what he thought was lesser-quality feed, and they would clean it up with little waste. Best of all, it took little labor to feed it.
After poking around for information from other producers and after a little experimentation, Deseret's program for planned windrow grazing was developed. Today morethan 4,000 acres of oats areseeded for this purpose.
"Fields around our main buildings, where wehave access to sufficient water, are seeded to oats in early June," Thomson explains. "Using custom operators, the costs for having theground worked and seeded, then windrowed in thefall runs between $\$ 50$ and $\$ 60$ per acre That includes fertilizer and chemicals. The cost varies with fertilizer requirements, but we
areseeing an increase in soil nutrients each year since cows areharvesting thecrop and their manure is scattered over the field."
Dryland yields vary but have been as high as 3 tons/acre. Thomson says the average would be about 2 tons. With \$60/acre cash output, the windrowed forage is worth $\$ 30 /$ ton. Whether swathed and left in the fiedd for grazing or baled, hauled and stored before feeding, the value of the feed should bethe same. H owever, windrow grazing offers significant cost savings. Based on custom operators' rates, Thomson says swathing costs $\$ 7.50 /$ ton. The cost of fencing and labor associated with windrow grazing adds about $\$ 1.50$, for a total of \$9/ton. Combined costsfor swathing, baling and stacking are $\$ 35$, while machinery and labor for feeding bales adds $\$ 10$, for a total cost of $\$ 45 /$ ton.
"I seethe $\$ 36$ differenceas significant savings," insists Thomson. "At a feeding rate of 30 pounds(lb.), thesavings

Forages are only cheap, in relationship to grain, when the cow assumes more responsibility for the harvest.
would be554 per cow per day, whilea calf eating 12 pounds would save $21.6 ¢$ per day."
Thomson has found that nutrient quality of the windrowed forage compares favorably with that of baled hay. Nutrient levels at the time of swathing rangefrom 11% to 17\% protein, while digestible energy has ranged from 1.16 to $1.36 \mathrm{M} \mathrm{cal} / \mathrm{lb}$. As long as windrows are undisturbed, only thetops are affected by weathering (similar to the outsideof hay bales), and within thewindrows little change in nutrient valueoccurs.
Thomson recommends swathing theoat crop as the kernels begin to fill. At that stage, he believes, thewhole plant is of relatively uniform palatability, which will reduce selective grazing. However, when cattle are first turned into windrowed feed, particularly if there islittle or no snow on the ground, they will root through every windrow. To reduce waste, he advises use of temporary electric fence to limit access to windrows and force cattleto clean up thefeed.
"M oving fence takes very little time and labor compared to feeding," says Thomson. "Our greatest reduction in wintering costs came from needing less equipment and a substantial cut in manpower."

Smart grazing

Primarily a farmer, Ken Remington returned to his family's northeastern Colorado operation in 1967. Likemany who farm thesemiarid High Plains, he raised wheat but also added a small Angus-based commercial cow herd. From 1976 through 1987 Remington wintered in Texas wherehe had additional cattleinterests.
Herecognized the cow cost advantage Texans achieved when grazing was unhampered by the kind of winter weather Northerners often face. Remington says annual cow maintenance costs for Southern graziers can be $\$ 100 /$ head lower than in the North, where dependence on harvested feed
often puts cow herds on winter welfare.
Remington believeshehas recovered most of that $\$ 100$ advantage by working smarter. Diversification of crops has allowed better integration with his cow enterprise. With just a little cooperation from Ol' Man Winter, added forage resources from cornstalks and annual cereal crops allow his cattle to grozethroughout theyear.
"I used to feed put-up hay for five months of theyear, butno more. I still keep a small inventory of hay for when weget deep snow and subzero temperatures, but it's never cheap to harvest and feed hay. I'm trying to makecows do most of the work," Remington offers.
"Now, instead of concentrating on wheat, I also raise dryland corn. Thecows run on cornstalksfor nearly six months (lateOctober through M arch), and they go to native pasture in April. We changed our calving season from February-M arch to April-M ay so they calve on grass," explains

Remington. "Wehave to provide a little supplemental feed by raising alfalfa, a forage type pea crop and annual cereals likeoats, rye or triticale. Weput up a little for hay, but the cows harvest most of it themselves."
Remington says cereal-crop pasture, when grazed before reaching the boot stage, commonly has a protein content ranging between 20% and 30%, so 5 - 10 lb . (on a dry-matter basis) will meet the protein requirements of a cow, even when lactating. Such highquality forage is too valuable to waste, however, and Remington says it requires more management than some producers arewilling to apply.
"You wouldn't dump a truckload of cottonseed cake in a pileand let your cows go at it, would you? Neither should you waste resources by giving cows unrestricted access to cereal pastures," admonishes Remington. "You should never let a cow lay down on them. Fifteen minutes daily, at a regular time, or 30 minutes
every other day will suffice. Use it to supplement dry grass, cornstalks or other crop stubble for a full-meal deal. Limited access al so removes concern over grass tetany or nitrate poisoning from lush pasture"
Remington favors triticale, calling it 20\%-50\% more productivethan wheat and more tolerant of poor soils. For early spring supplemental pasture, he plants winter triticale during the latter half of August. During years with good late-summer and fall moisture, there will be considerablegrazing for cows in October and November, as well as regrowth to grazeduring the following M arch and April.
"For supplemental pasture used late August through September, plant a spring-type triticalein late July," Remington explains. "We've seen weaning weights on spring-born calves bumped by 20 to 50 pounds after grazing pairs this way. It's al so a good way to get dry cows in better condition for winter. "Keeping cull cows over the winter and grazing them on
triticale in the spring, with a littlesupplemental grain, has worked well since gains are worth morethen. It's pretty nice to sell a cull cow for $\$ 600$ or more in late M ay. It's been a few years sincel've done it with this program, but with improving cull cow prices, I expect to do it again soon," he adds.

Remington insiststhat, for supplemental pastures of an annual forage, large acreages are not necessary. An acrefor every threeor four cows is sufficient, but the supplemental pasture does have to beeasily accessible for both thecows and the rancher.
"Accessibility can bea challenge," Remington admits. "It has to beclose to water, and it will have to bewell-fenced. Even if a producer has no cropland adjacent to his permanent pasture, hemight want to think about converting a small amount of suitable rangeland to an annual foragecrop."

